
April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

DENSE STRUCTURAL EXPECTATION MAXIMISATION WITH

PARALLELISATION FOR EFFICIENT LARGE-NETWORK

STRUCTURAL INFERENCE

CHRISTOPHER FOGELBERG

Department of Computer Science, University of Oxford,

Oxford, OX1 3QD, United Kingdom

cgf@syntilect.com

VASILE PALADE

Department of Computer Science, University of Oxford,

Oxford, OX1 3QD, United Kingdom

vasile.palade@cs.ox.ac.uk

Received (18th January 2012)
Revised (24th September 2012)
Accepted (22nd January 2013)

Research on networks is increasingly popular in a wide range of machine learning fields,
and structural inference of networks is a key problem. Unfortunately, network structural
inference is time consuming and there is an increasing need to infer the structure of ever-
larger networks. This article presents the Dense Structural Expectation Maximisation
(DSEM) algorithm, a novel extension of the well-known SEM algorithm. DSEM increases
the efficiency of structural inference by using the time-expensive calculations required
in each SEM iteration more efficiently, and can be O(N) times faster than SEM, where
N is the size of the network. The article has also combined DSEM with parallelisation
and evaluated the impact of these improvements over SEM, individually and combined.
The possibility of combining these novel approaches with other research on structural
inference is also considered. The contributions also appear to be usable for all kinds of
structural inference, and may greatly improve the range, variety and size of problems
which can be tractably addressed. Code is freely available online at: http://syntilect.
com/cgf/pubs:software.

Keywords: Bayesian networks; structural inference; SEM; parallelisation; large networks.

1. Introduction

Structural inference is the problem of inferring the set of dependencies (edges) in

a graphical model using time series observations of the nodes. Accurate structural

inference is needed to understand the functional relationship amongst the nodes

and to predict their future states.

Bayesian networks (BNs) 18 and other statistical graphical models 21 have some

advantages over other representations like Boolean networks 2 and differential equa-

tions 37. These advantages include the capacity for modelling non-linear relation-

1

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

2 Fogelberg and Palade

ships, some causal inference of the underlying system 24,35 and robust inference in

the face of missing and noisy data when using algorithms like structural expectation

maximisation (SEM) 13,40.

On the other hand, the structural inference of BNs and other similar graphi-

cal models is NP hard 4,3, and this makes structural inference of networks with

N > 100 nodes very difficult. This article presents Dense SEM, a general machine

learning research contribution which extends the SEM algorithm to help address

this problem, and it uses genetic regulatory networks (GRNs) to show the value

of DSEM over SEM. The article also briefly presents a parallelisation of the pro-

posed algorithm, and shows how the benefits of DSEM and parallelisation combine

multiplicatively to allow for the successful inference of larger networks.

This article is structured as follows. Section 2 introduces GRNs and BNs, and

presents previous research relevant to this article. Section 3 goes on to describe the

major novel contribution of this article, DSEM. The resulting algorithm is up to

O(N) times more efficient than SEM, where N is the size of the network being

inferred. In combination with the parallelisation summarised in Section 5, DSEM

makes structural inference of larger networks more tractable, and some analysis on

this is presented as well. Finally, Section 6 summarises this article, its contributions

and future research. Access details for the implementations of the novel approaches

described in this paper are also provided.

2. Background

Subsection 2.1 introduces BNs and Subsection 2.2 describes how BNs can be used

to represent GRNs. Subsection 2.3 describes relevant previous research.

2.1. Bayesian Networks

BNs are comprehensively introduced in other publications (e.g., 21) and will not be

fully detailed in this article. However, note that BNs have also been extensively used

in other fields, including natural language processing 5,34, machine translation 41,

medical diagnosis 21 and technological fault diagnosis 25. This means that the novel

contributions illustrated using biological examples in this article may generalise

easily to research in other fields as well. Figure 1 is the structure of an example BN.

Many real-world networks, including GRNs, are cyclic. However classic BNs must

be acyclic because they use conditional probability distributions 10. Fortunately, this

problem can be addressed by representing each node’s state at time t and time t+1

using two different variables.

Unrolling a BN in this way is analogous to unrolling a Markov chain over time.

The resulting structure is known as a dynamic Bayesian network (DBN) 14,15,40

and can represent cyclic networks. Figure 2(a) shows a cyclical network which must

be represented using a DBN, and Figure 2(b) shows the network structure if a DBN

were used to model this network.

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

Dense Structural Expectation Maximisation with Parallelisation for Efficient Large-Network Structural Inference 3

n2 n3

n5

n8n9n10

n7n4

n1

n6

Fig. 1. A Bayesian network. The distributions for the nodes with no parents (i.e., n1, n2, n3) are
not conditional on any other node and are denoted by an incoming parentless edge.

n2 n3

n1

n1

n′
2

n2

n′
3

n3

n′
1

(a) A cyclic network (b) An acyclic representation

Fig. 2. A cyclic network structure (impossible to factorise) and the same dependencies unrolled
over time, as they would be represented in a DBN.

Valid DBN structures are restricted so that edges cannot point “backwards” or

“sideways” in time, but only forwards, and so a DBN is necessarily acyclic. Because

GRNs are often cyclic, this article will only use DBNs.

2.2. Genetic Regulatory Networks

As well as having direct phenotypic effects, genes also turn each other on and off,

and these relationships can be represented using a directed graphical model (e.g.,

Figure 3). Understanding what these regulatory relationships are is important for

a range of reasons 10, and the importance of genome-scale (i.e., large network)

structural inference is also increasingly appreciated 16,17,19,31,32,33,29.

Genome-scale GRNs often contain 6000 or more genes, making them 1 to 2 orders

of magnitude larger than is tractable with SEM. Similarly, techniques using other

graphical representations like Boolean networks are also intractable on genome-

scale networks 22. This illustrates and motivates the need for novel approaches to

structural inference.

A gene’s expression level is a real-valued measurement of how strongly the gene

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

4 Fogelberg and Palade

n6

n10

n3n4n2

n12

n7n8

n11

n1

n9
n14

n5

Fig. 3. A hypothetical genetic regulatory network. A genetic regulatory network is a directed
graph with many loops. This figure shows one with 13 nodes, and the edges represent regulatory
relationships. For example, n6 is regulated by n8, n9, n11 and itself. Note that genome-scale GRNs
are much larger than the network shown in this figure. For example, Saccharomyces cerevisiae is
commonly used as a model organism and has more than 6000 genes.

is turned on (or not) at any particular point in time, and time series observations of

these expression levels are used for the network structural inference. More detailed

information on GRNs and their network or functional characteristics can be found

in literature surveys like 7 and 10.

2.3. Previous Research on Efficiency for Bayesian Networks

Likelihood calculation is a fundamental task for using BNs and is necessary for struc-

tural inference, but it is NP-hard. Thus, efficient likelihood calculation has been the

focus of much BN research, and algorithms like Pearl’s 27 message passing algorithm

are widely used. Other efficiency research has also considered structural restrictions,

parameter approximations and dimensional reduction, and these techniques may be

combined with the research presented in this article to make structural inference

even more tractable.

2.3.1. Structural Restrictions

In a BN, the size of a conditional probability distribution grows exponentially as the

node’s in-degree grows. One efficiency technique is to limit the maximum in-degree

of a single node 19. However, because the in-degree of a GRN follows a power law
10, restricting the structure may affect the accuracy of the inferred structure.

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

Dense Structural Expectation Maximisation with Parallelisation for Efficient Large-Network Structural Inference 5

2.3.2. Parameter Approximation

Classically, θ in a BN is a set of conditional probability distributions. Another way of

addressing the time complexity of likelihood calculation is by approximating these

distributions in some way.

For example, 14 used noisy-or, which models the impact of each parent node

as independent of the other parents. Such an approximation has only linearly as

many parameters as there are parents, but it restricts the functions which can be

represented, potentially including many of the non-linearities that are key to GRNs

and other networks. Hence, since GRNs can be highly non-linear, using noisy-or

may limit the value of any GRN structural inference.

Langseth and Nielsen 23 use parameter tying, grouping nodes together using

object-oriented programming principles and prior knowledge. Parameter tying has

also been used for other problems, including speech recognition (e.g., 42 and 43),

handwriting recognition 28, and in bioinformatics (e.g., 6,20 and 26).

2.3.3. Dimensional Reduction

Dimensional reduction by clustering nodes together has also been used 9,15,30,31,36.

Because co-expressed nodes in a GRN can be co-dependent, clustering may usefully

reduce the dimensionality without introducing too much false information or signif-

icantly inflating the maximum in-degree. On the other hand, it may also limit the

accuracy of the inferred network in the same way that structural restrictions and

parameter approximation may.

3. Dense SEM

SEM is a structural inference algorithm for BNs that works by calculating the pa-

rameters and the score of the current structure, estimating the score of all structures

that can be reached after applying one edge-change operation and then applying

the operation which improves the score by the most. It iterates this process until no

operation is estimated to improve the score, terminating and returning the highest

scoring network found.

Dense SEM is a modified version of this algorithm that can apply more than one

operation per iteration, and it is called Dense SEM because the applied operations

are more densely concentrated amongst fewer iterations (illustrated conceptually in

Figure 4). Each iteration of SEM requires time-expensive calculations. DSEM can

use each set of calculations to make multiple changes and this is why it can be faster

than SEM. While applying multiple operations is relatively simple at a conceptual

level, and hinted at in 21, actual development and implementation turns out to be

quite subtle. Figure 5 presents the DSEM algorithm in detail.

In each iteration of DSEM, up to c operations may be applied, and these are

selected one after the other using up to c inner iterations. In each one of these, the

best candidate operation that can still be applied is obest. So long as it is estimated to

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

6 Fogelberg and Palade

Fig. 4. A visual conceptualisation of the difference between SEM and DSEM. The network search
space is represented by the grid, where points represent structures, and lines amongst them possible
operations. The contours show the relative quality of each structure. A local maxima spanning
three structures (e.g., an equivalence class) exists near the top-right corner of the figure, and
another local maxima is located in the bottom right hand corner of the figure. The search path for
SEM (blue, more dots) and DSEM (red, fewer dots) start at the same place in the lower left. The
points in the space where SEM and DSEM infer θ and S, compute the ESS (expected sufficient
statistics) and estimate the ∆S are denoted by small circles on their path.

improve the score, then this is applied, and then removed from the set of candidate

operations.

However, additionally, the estimated ∆S (change in score) of some other opera-

tions will also be affected by the application of obest. In general, obest and any other

operation are one of the following types of operations:

• Strongly dependent

• Weakly dependent

• Independent

Subsection 3.1 describes strongly dependent operations which greatly affect each

others’ ∆S, and Subsection 3.2 describes weakly dependent and independent oper-

ations. Subsection 3.1 also describes how the set of operations which are strongly

dependent on obest, Oinvalid, are identified and removed from O.

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

Dense Structural Expectation Maximisation with Parallelisation for Efficient Large-Network Structural Inference 7

begin

repeat

Infer θ and calculate the score S for current structure Gcur

Identify O, the set of valid operations from Gcur

Calculate the ESS (Expected Sufficient Statistics) for each o ∈ O

Use the ESS to estimate ∆S(o) for each o ∈ O

for no more than c operations do

obest = arg maxo∈O ∆S(o)

if ∆S(obest) > ǫ then

Gcur = obest(Gcur)

O = O − obest − Oinvalid(obest)

else

// Best operation decreases the score

break

end

end

until Gcur is at a local maxima

end

Fig. 5. The DSEM algorithm, where ∆S(o) is the estimated change in score from operation
o, o(G) applies o to structure G and Oinvalid(o) are the operations in O made invalid by
the application of o.

3.1. Strongly Dependent Operations

Two operations (o1 and o2) are strongly dependent if both change the parent set

of the same node, ni. This is because BNs are scored using a penalised likelihood

function and the likelihood of the structure as a whole is just the product of the like-

lihood of each node, where each node’s likelihood is conditional on its parents. Thus,

if two operations both affect a node’s parents, then both will affect its likelihood

and each other’s ∆S.

For example, o1 (“add nj → ni”) and o2 (“add nk → ni”) are strongly dependent

because both are parents of ni and the likelihood of ni changes non-linearly as

parents are added and removed, i.e., ∆S(o1, o2) 6= ∆S(o1) + ∆S(o2).

One approach to this problem is to calculate ∆S(ox, oy) for all possible 2nd-

order operations that are strongly dependent, 〈ox, oy〉 ∈ O. However, if each pair of

operations affecting each of the N nodes were considered (N2 pairs of operations per

node), then O(N ×N2) = O(N3) possible 2nd-order operations must be considered

and their ∆S calculated, as well as ∆S for each of the O(N2) 1st-order operations

(see Appendix Appendix A). Similarly, if 3rd-order operations were considered, then

another O(N4) operations must be considered, and if all possible higher order oper-

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

8 Fogelberg and Palade

ations were considered, then ∆S would need to be estimated for O(NN) operations,

which is intractable.

Additionally, note that the operations’ ∆S are only estimated and may some-

times be wrong to a greater or lesser extent. Thus, attempting to estimate ∆S

for higher order operations whose component operations are strongly dependent on

each other may be vulnerable to multiplicatively growing estimation errors. Such

errors could lead to noisy and inefficient structural inference.

Therefore, for conceptual and practical reasons, DSEM does not allow directly

dependent operations to both be performed in the same iteration, and all operations

which are strongly dependent on obest are included in Oinvalid and removed from

consideration for that iteration. These operations are also easily detected because

it is clear from the operation which nodes’ parents are affected. Because these

temporarily invalidated operations are still possible in the next iteration and will

be considered then with their ∆S re-calculated, this restriction does not restrict the

search.

3.2. Weakly Dependent Operations

Most operations whose ∆S are not strongly dependent on the application or non-

application of obest’s will be independent of obest. However, some operations may

also be weakly dependent, and this is due to the structure, interactions amongst

the operations and the patterns of missing (hidden) data. For example, consider

Figure 6.

t

t + 1

t + 2

pai ni nj paj

pa′
i n′

i (H) n′
j (H)

n′′
i

pa′
j

n′′
j

Fig. 6. An example of two weakly dependent operations in a DBN. The two operations which
are weakly dependent are “add ni → nj” and “add nj → ni” (dotted lines), and this figure shows
the state of ni, nj and their parents at times t, t + 1 and t + 2. It does not matter in this example
if pai and paj are disjoint, but (for the sake of the example) this figure assumes that ni /∈ paj

and nj /∈ pai before any operations are applied to the current structure. Note that ni and nj are
hidden at time t + 1. The two operations are weakly dependent because of this.

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

Dense Structural Expectation Maximisation with Parallelisation for Efficient Large-Network Structural Inference 9

In this figure, the two operations shown are:

• Add an edge from ni to nj

• Add an edge from nj to ni

And they are weakly dependent because of the pattern of hidden data, even

though the two operations do not directly affect the same node’s parents. Consider:

If the edge from ni to nj is added then it will change the uncertain distribution over

nj at t + 1, which would in turn affect the likelihood of ni at time t + 2 if nj → ni

were also added, and thus affecting ∆S for nj → ni. Similarly, if the edge from nj

to ni were added then it would change the uncertain distribution over ni at t + 1,

which would in turn affect the likelihood of nj at time t + 2 if ni → nj were also

added, and thus affecting ∆S for ni → nj .

Because weakly dependent operations are rare, complex to detect and because

exploratory experiments show that assuming independence in their case does not

have a detectable impact on the number of iterations necessary for structural infer-

ence or the inferred networks’ quality, DSEM assumes independent ∆S amongst all

operations which are not strongly dependent.

Furthermore, even in the worst case, incorrectly assuming independence when

two operations are weakly dependent could only alter the local maxima that DSEM

identified. This is because DSEM will continue to iterate until no individual opera-

tion in an iteration has an estimated score that is better than the current structure’s

score.

4. Parameterising DSEM and comparing it to SEM

This section describes experiments used to help identify the best parameterisation

of DSEM and to compare its efficiency and the inferred network quality with SEM.

Subsection 4.1 describes the experimental configuration, Subsection 4.2 presents the

results and Subsection 4.3 summarises the relative efficiency of DSEM and SEM.

4.1. Experimental Configuration

10 different parameterisations of DSEM were used and evaluated in these exper-

iments, and their performance was evaluated using 5 different 100-gene networks

(50 structural inference experiments in total, requiring more than 500 hours of CPU

time).

Before execution of these experiments, another 80 exploratory inferences with

different training set sizes, noise and missing data configurations on other networks

were also used to help design this experimental configuration. These exploratory

experiments required a similar quantity of CPU time and are referred to where

necessary in this article, but are not fully detailed here to limit the length.

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

10 Fogelberg and Palade

4.1.1. Networks and data

Full knowledge of the underlying network is needed to evaluate novel approaches for

structural inference, and very few biological GRNs are well knowna. Because of this,

the 5 different GRNs used in these experiments were simulated using GreenSim

11. GreenSim is a modern GRN simulator that can automatically generate a bio-

logically plausible structure, and it simulates gene expression levels in a continuous

fashion using non-linear regulatory relationships.

Although the quality of the inferred network and time required is strongly de-

pendent on the quantity and quality of training data, the exploratory experiments

also showed that the same network was inferred in all cases using any of the 10

different parameterisations, regardless of the quantity of training data, noise and

hidden data values. Based on the DSEM and SEM algorithms, this similar variation

is to be expected.

Because the purpose of these experiments is to compare the different parameter-

isations, and not evaluate their absolute performance, it also allows a much simpler

and concise experimental configuration. In particular, it means that only a single

training data set needed to be generated for each network. Each of these training

data sets consisted of 25 independently generated time series, and each time series

consisted of 60 consecutive observations with no missing data or noise, (i.e., 1500

observations per gene). Using the same training data set with each parameterisation

also helps ensure the results are comparable across parameterisations.

Bayesian networks with discrete nodes were also used to help make the inferred

networks more comprehensible, and the continuous gene expression levels are dis-

cretised into four buckets 39. Empirical tests were also performed on the simulated

networks and time series data to ensure that they exhibited reasonable character-

istics for inference (e.g., no genes permanently at a maximum or nil expression

level).

4.1.2. Parameterisations

DSEM can be parameterised by specifying the maximum number of operations

allowed per iteration and Table 1 shows the 10 parameterisations that were con-

sidered. Each parameterisation may potentially be an exponentially decaying max-

imum number of operations per iteration according to Equation 1, where cmax(i)

is the maximum number of operations per iteration allowed in the i’th iteration,

δinit is the number of operations at the end of the first SEM iteration, and τ is the

exponential decay rate of δinit.

cmax(i) = ⌈δinit × τ i−1⌉ (1)

Using an exponentially decaying maximum number of operations (as in param-

aIndeed, this is one reason it is such a vibrant and central networks topic.

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

Dense Structural Expectation Maximisation with Parallelisation for Efficient Large-Network Structural Inference 11

eterisations 8–10) may force DSEM to take smaller and smaller steps as it gets

closer and closer to a maxima, and the utility of this forced reduction in step size

is analysed along with the other results in the next subsection. Regardless of the

parameterisation used, inference of each network was run for as many iterations as

needed until no possible operation had a positive ∆S.

NB: If no more than 1 change is allowed per iteration then DSEM is SEM. This

is the left-most parameterisation in Table 1 and was used to compare the time

efficiency and inferred network quality of DSEM with SEM.

Parameterisation: 1 (SEM) 2 3 4 5 6 7 8 9 10

δinit: 1 3 5 7 11 20 100 11 11 11

τ : 1 1 1 1 1 1 1 0.92 0.9 0.85

The Akaike information criterion 1,12 is appropriate to be used for inferring

GRNs 38 and was used in this article. Exploratory experiments also found that an

empty initial structure without any edges led to inference of better networks, so

this initial structure was used for all presented experiments in this article.

4.2. Experimental Results

As Figure 7 shows, the fastest parameterisation for DSEM was parameterisation 7,

with δinit = 100 and τ = 1 (i.e., c = N for all iterations). Because the same network

structure was inferred for each network regardless of the parameterisation that was

used (and similarly, in the other exploratory experiments), these results also suggest

that the best parameterisation for DSEM in other situations is c = δinit = N and

τ = 1.

Conversely, SEM (parameterisation 1) was the slowest parameterisation, taking

between 167 and 200 iterations on the 5 networks considered. Since parameterisation

7 took only 4 iterations on each of the networks and the time taken per iteration

does not vary with the number of operations applied, this means that DSEM was

41-50 times faster than SEM on these networks.

Further analysis of these experiments also supports in two ways the earlier con-

ceptual analysis for not considering the interaction of weakly dependent operations.

Firstly, the variance in the results for each parameterisation are due to the

same number of operations for each network being applied across more or fewer

iterations. However, if weak dependence was significant, then interactions amongst

weakly dependent operations would mean that extra iterations would be needed

in the parameterisations with greater average c. In that case, the relative variance

across networks would be greater, not the same as is shown in Figure 7.

Secondly, consider Figure 8. This figure shows the changes made per iteration by

parameterisation 5 and 8, where 8 enforced a declining number of maximum changes

per iteration. As this (and other similar figures, not shown here to limit the length)

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

12 Fogelberg and Palade

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10

Number of iterations

Parameterisation

Ite
ra

tio
ns

SEM
Constant c
Decaying c

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Time for structural inference

Parameterisation

T
im

e
(m

)

SEM
Constant c
Decaying c

Fig. 7. The mean number of iterations (LHS) and time (RHS) for each configuration (numbered
as in Table 1). Error bars are one standard deviation of the iterations or time necessary from
network-to-network and show variation amongst the networks used.

make clear, artificially limiting the number of operations to less than N leads to

poorer performance. However if weak dependency had a greater impact, then there

would be a more gradual decrease in the number of operations per iteration.

4.3. Relative Efficiency Summary

Using the best identified parameterisation, the experiments in Subsection 4.2 showed

that DSEM was up to 50 times faster than SEM on the five 100-gene GRNs being

considered (see Figure 9).

In the best case situation, DSEM may be up to N times faster than SEM, where

N is the size of the network which must be inferred. On the other hand, in the

worst case, DSEM may be very slightly slower due to the additional overhead in

the algorithm (see Figure 5).

Unfortunately, it is difficult to calculate the relative speed advantage of DSEM

in the average case because the number of iterations is what drives the advantage,

and this is determined by a complex range of factors that are extremely difficult to

quantify, including the intrinsic likelihood of the data and its quantity, the pattern of

missing values in the data, and the (presumably unknown) dependencies amongst

the nodes in the graph. Fogelberg 8 presents some initial analysis, and thorough

analysis of this question is one area for further research.

5. Parellelising Structural Inference

Implementing and evaluating parallelised DSEM (and SEM) is the second novel con-

tribution that this article makes. Like DSEM, the parallelisation greatly increases

the size, range and variety of networks which can be structurally inferred.

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

Dense Structural Expectation Maximisation with Parallelisation for Efficient Large-Network Structural Inference 13

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

Iteration

C
ha

ng
es

 a
pp

lie
d

Changes per iteration for DSEM (parameterisations 5 and 8)

Parameterisation 5
Parameterisation 8

Fig. 8. The number of operations applied by DSEM with parameterisation 5 (δinit = 11, τ = 1;
i.e., no decay) and parameterisation 8 (δinit = 11, τ = 0.92; i.e., decay). Each of the ten lines
represents the inference of one network with one parameterisation (5 networks, once for each
parameterisation).

5.1. Parallel Implementation

Parallelisation of the DSEM codebase was constrained by intrinsic limitations of

distributing computing. In particular, disk IO is not possible without the overhead

of using a distributed file system and the inputs and outputs to each loop iteration

must be independent of each other, and this can drive some of the changes needed.

For example, rather than accumulating a total over several loop iterations, the

subtotals from each individual loop iteration must be separately stored into a dis-

tributed data structure and then reduced after the parallel loop has completed.

With these factors in mind, the following three stages of DSEM were parallelised:

• Likelihood calculations (for calculating S) and θ inference

• ESS computation

• Estimating ∆S for each o ∈ O

Each of these three steps in the DSEM algorithm is very time consuming, with

loops that have many iterations and where each individual iteration can be long.

Focusing on loops like this maximise the benefits of parallelisation.

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

14 Fogelberg and Palade

SEM DSEM
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

M
ea

n
m

in
ut

es
 fo

r
in

fe
re

nc
e

Relative speed advantage of DSEM over SEM

Fig. 9. The time required for inference using SEM and DSEM. Time is in minutes.

All code was executed using the Oxford e-Research Centre Windows Compute

Cluster (OeRC WCC) parallel Matlab cluster. In this cluster, the head node is a

quadruple dual-core 2.66GHz 64 bit Intel Xeon with 32GB of RAM, and each of the

16 worker machines is a Dell PE 1950 with 2 dual-core 2.66GHz 64 bit processors

and 8GB RAM. A pool of 12 worker cores (automatically chosen by the head node)

was opened for the experiments in this section. Note that, because others were using

other cores in the cluster simultaneously, some variation in the time taken can be

observed.

5.2. Experimental Configuration and Results

A conceptual analysis of parallelisation suggests that its benefit will be approxi-

mately linear in the number of worker cores the inference is divided amongst. These

experiments considered 6 levels of parallelisation: 10 additional worker cores, 8, 6,

4, 2 and 0 (i.e., no parallelisation).

In total 10 experiments for parallelisation were conducted, using five 100-gene

GRNs (like in Subsection 4) and 2 different training data sets for each. Each training

data set consisted of 25 independently generated time series with 30 consecutive

observations. Because the objective of these experiments was to evaluate the relative

impact on the time required by different levels of parallelisation, it means that

varying the network size, quantity of training data or level of noise and missing

data is not insightful and no such experiments are reported in this article.

As expected, the same search path was followed for each of the 10 experiments

and the same network was inferred, regardless of the degree of parallelisation. Fig-

ure 10 presents the mean number of minutes required for structural inference.

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

Dense Structural Expectation Maximisation with Parallelisation for Efficient Large-Network Structural Inference 15

0 2 4 6 8 10
0

100

200

300

400

500

600

700

Number of extra worker cores

M
ea

n
m

in
ut

es
 fo

r
in

fe
re

nc
e

Time for inference by magnitude of parellelisation

Fig. 10. Inference time with varying degree of parallelisation. The number of extra worker cores
(10, 8, 6, 4, 2 or 0; i.e., no parallelisation) are shown as bars along the x-axis, and the mean number
of minutes necessary to infer the structure of each network is shown on the y-axis. Results are
noisy due to the cluster also being used by others while the experiments were being conducted.

Firstly, this figure shows that parallelisation is essential to the practical and

tractable structural inference of large networks. This is because, even when using

DSEM, the mean time necessary to infer one 100-gene network without any paral-

lelisation is more than 10 hours. Further, this figure grows super-linearly as larger

networks 8 are considered.

Secondly, the analysis of the time needed for inference using between 2 and 10

worker cores shows the expected linear speed up as more parallelisation is used.

However, inference without any parallelisation was much slower than this linear

analysis would suggest. The experiment was re-run several times using an alternative

master computer, and the same pattern was observed in each case. Since structural

inference is also very memory intensive, we hypothesise that this may be a memory

and paging issue, and a further motivation for parallelisation.

6. Discussion and Conclusions

Network studies is an increasingly important research topic that spans a number

of fields. In general, network structural inference is an extremely difficult and very

time consuming machine learning problem, but it is also a very important one,

including for large biological networks like genome-size GRNs. This article has pre-

sented DSEM, a novel extension of the SEM algorithm that increases the efficiency

of structural inference by using the time-expensive calculations required in each

SEM iteration more efficiently. The article has also combined DSEM with paralleli-

sation and evaluated their impact, individually and combined, and this impact is

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

16 Fogelberg and Palade

summarised in Figure 11.

SEM (est.) DSEM DSEM (parallel)
0

50

100

150

200

250

300

350

400

450

500

M
ea

n
ho

ur
s

fo
r

in
fe

re
nc

e

Relative speed advantage of parallelisation and DSEM over SEM

Fig. 11. The relative speed advantage of DSEM and parallelisation over SEM. DSEM (parallel)
results are using 10 cores for parallelisation. Y-axis results are in hours. Inference time for SEM
(without parallelisation) is estimated by calculating the mean time per iteration and multiplying
by the number of operations applied. Graph calculated using data from experiments in Section 5
and error bars were insignificant and are not shown.

Both contributions are publicly available online (http://syntilect.com/cgf/

pubs:software), and further research and analysis of the DSEM and its paral-

lelisation combined with other techniques may prove fruitful. In particular, more

thorough analysis of Fogelberg’s 8 average case efficiency of DSEM versus SEM

would be valuable. Further validation of the DSEM algorithm in other problem

domains would also be useful, as would be its combination with the three other

structural inference efficiency levers presented in Subsection 2.3.

7. Acknowledgements

Christopher Fogelberg gratefully acknowledges the financial and logistical support

of the Commonwealth Scholarship Commission in the United Kingdom and the

Oxford-Man Institute of Quantitative Finance, without whose support this research

would not have been possible. We would also like to thank the Oxford e-Research

Centre (OeRC) for access to their Microsoft Cluster on which our experiments were

run.

Appendix A. Bounding the Number of Operations

The number of possible operations per iteration in a DBN is polynomially bound

by the size of the network.

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

Dense Structural Expectation Maximisation with Parallelisation for Efficient Large-Network Structural Inference 17

Consider: A DBN has N nodes, and in some structure G, each ni ∈ N is the

sink for ein
i edges and the source of eout

i edges. SEM and DSEM use three types of

operation, and they are:

• Edge addition

• Edge deletion

• Edge reversal

Therefore, for some ni ∈ N , the number of possible operations of each type are

as follows:

• Possible edge additions: oadd
i = N − eout

i

• Possible edge deletions: odel
i = eout

i

• Possible edge reversals: orev
i = eout

i − fi

where fi = |nj ∈ N : ∃nj → ni| and is the size of the set of all nodes with edges

to ni that ni also has edges to, and its inclusion is justified because reversing an

edge between ni and nj , if there is already an edge from nj to ni, is akin to deleting

the edge between ni and nj and, thus, is already counted in the set of possible edge

deletions.

Therefore, since oadd
i + odel

i = N and orev
i ≤ odel

i , there may be no more than:

∑

x∈{add,del,rev}

ox
i ≤ 2N (A.1)

operations for all ni ∈ N . Hence the total number of possible operations per iteration

in a DBN with N nodes is upper bound by N × 2N = O(N2).

References

1. H. Akaike. Information theory and an extension of the maximum likelihood principle.
In B. N. Petrov and F. Csaki, editors, 2nd International Symposium on Information
Theory, pages 267–281, 1973.

2. Y. Cao, P. P. Wang, and A. Tokuta. Reverse engineering of NK boolean network and its
extensions — fuzzy logic network (FLN). New Mathematics and Natural Computation,
3(1):68–87, 2007.

3. X. Chen, G. Anantha, and X. Wang. An effective structure learning method for con-
structing gene networks. Bioinformatics, 22(11):1367–1374, 2006.

4. D. M. Chickering. Learning Bayesian networks is NP-Complete. In D. Fisher and
H. J. Lenz, editors, Learning from Data: Artificial Intelligence and Statistics V, pages
121–130. Springer-Verlag, 1996.

5. D. M. Chickering and T. Paek. Personalizing influence diagrams: applying online learn-
ing strategies to dialogue management. User Model. User-Adapt. Interact., 17(1-2):71–
91, 2007.

6. R. D. Dowell and S. R. Eddy. Efficient pairwise RNA structure prediction and align-
ment using sequence alignment constraints. BMC Bioinformatics, 7:400, 2006.

7. M. E. Driscoll and T. S. Gardner. Identification and control of gene networks in
living organisms via supervised and unsupervised learning. Journal of Process Control,
16(3):303–311, March 2006.

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

18 Fogelberg and Palade

8. C. Fogelberg. The Structural Inference of Large Regulatory Networks. PhD thesis,
Computing Laboratory, Oxford University, September 2010.

9. C. Fogelberg and V. Palade. Evaluating clustering algorithms for genetic regulatory
network structural inference. In Research and Development in Intelligent Systems
XXVI: Proceedings of AI-2009, The Twenty-Ninth SGAI International Conference on
Innovative Techniques and Applications of Artificial Intelligence (AI2009), volume 29,
pages 137–150, Cambridge, UK, December 2009. Springer-Verlag.

10. C. Fogelberg and V. Palade. Genetic regulatory networks: A review and a roadmap.
In A. Abraham, A.-E. Hassanien, A. Vasilakos, W. Pedrycz, F. Herrera, P. Siarry,
A. de Carvalho, and A. P. Engelbrecht, editors, Foundations of Computational Intel-
ligence, chapter 1:1. Springer-Verlag, 2009.

11. C. Fogelberg and V. Palade. Greensim: A network simulator for comprehensively val-
idating and evaluating new machine learning techniques for network structural infer-
ence. In IEEE ICTAI2010, volume 2, pages 225–230, Arras, France, October 2010.
IEEE Computer Society.

12. M. Forster and E. Sober. How to tell when simpler, more unified, or less ad hoc
theories will provide more accurate predictions. The British Journal for the Philosophy
of Science, 45(1):1–35, 1994.

13. N. Friedman. Learning belief networks in the presence of missing values and hidden
variables. In D. H. Fisher, editor, ICML, pages 125–133. Morgan Kaufmann, 1997.

14. N. Friedman, K. Murphy, and S. Russell. Learning the structure of dynamic prob-
abilistic networks. In Proceedings of the 14th Annual Conference on Uncertainty in
Artificial Intelligence (UAI-98), volume 14, pages 139–147, San Francisco, CA, 1998.
Morgan Kaufmann.

15. A. M. Gholami and K. Fellenberg. Cross-species common regulatory network inference
without requirement for prior gene affiliation. Bioinformatics, 26(8):1082–1090, 2010.

16. R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers, and J. P.
Sethna. Universally sloppy parameter sensitivities in systems biology models. PLoS
Compututational Biology, 3(10):e189, October 2007.

17. B. Hayete, T. S. Gardner, and J. J. Collins. Size matters: Network inference tackles
the genome scale. Molecular Systems Biology, 3(77):1–3, February 2007.

18. D. Heckerman. A tutorial on learning with Bayesian networks. Technical report, Mi-
crosoft Research, Redmond, Washington, 1995.

19. Z. Huang, J. Li, H. Su, G. S. Watts, and H. Chen. Large-scale regulatory network
analysis from microarray data: modified Bayesian network learning and association
rule mining. Decision Support Systems, 43(4):1207–1225, 2007.

20. R. Jurgelenaite and P. J. F. Lucas. Exploiting causal independence in large Bayesian
networks. Knowledge-Based Systems, 18(4–5):153–162, 2005.

21. D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009.

22. H. Lähdesmäki, I. Shmulevich, and O. Yli-Harja. On learning gene regulatory networks
under the Boolean network model. Machine Learning, 52(1–2):147–167, 2003.

23. H. Langseth and T. D. Nielsen. Fusion of domain knowledge with data for structural
learning in object oriented domains. Journal of Machine Learning Research, 4:339–
368, 2003.

24. S. Mani, P. Spirtes, and G. Cooper. A theoretical study of Y structures for causal
discovery. In Proceedings of the Twenty-Second Conference Annual Conference on
Uncertainty in Artificial Intelligence (UAI-06), pages 314–323, Arlington, Virginia,
2006. AUAI Press.

25. O. J. Mengshoel, S. Poll, and T. Kurtoglu. Developing large-scale Bayesian networks

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

Dense Structural Expectation Maximisation with Parallelisation for Efficient Large-Network Structural Inference 19

by composition: Fault diagnosis of electrical power systems in aircraft and spacecraft.
In Proc. of the IJCAI-09 Workshop on Self-⋆ and Autonomous Systems (SAS): Rea-
soning and Integration Challenges, 2009.

26. S. Natarajan, I. Ong, D. Haight, D. Page, and V. S. Costa. Modeling temporal biomedi-
cal data by SRL. In J. Ramon, F. Costa, C. Costa, and J. Kok, editors, ECML08 Work-
shop on Statistical and Relational Learning in Bioinformatics (StReBio), Antwerp,
Belgium, September 2008.

27. J. Pearl. Probabilistic Reasoning in Intelligent Systems : Networks of Plausible Infer-
ence. Morgan Kaufmann, September 1988.

28. F. Pernkopf and M. Wohlmayr. On discriminative parameter learning of Bayesian
network classifiers. In W. L. Buntine, M. Grobelnik, D. Mladenic, and J. Shawe-Taylor,
editors, ECML/PKDD (2), volume 5782 of Lecture Notes in Computer Science, pages
221–237. Springer, 2009.

29. M. Pritsker, Y.-C. Liu, M. A. Beer, and S. Tavazoie. Whole-genome discovery of
transcription factor binding sites by network-level conservation. Genome Research,
14(1):99–108, January 2004.

30. D. Reiss, N. Baliga, and R. Bonneau. Integrated biclustering of heterogeneous genome-
wide datasets for the inference of global regulatory networks. BMC Bioinformatics,
7(1):280, 2006.

31. S. Roy, S. Plis, M. Werner-Washburne, and T. Lane. Scalable learning of large net-
works. Systems Biology, IET, 3(5):404–413, September 2009.

32. T. Schlitt and A. Brazma. Modelling gene networks at different organisational levels.
FEBS Letters, 579:1859–1866, March 2005.

33. T. Schlitt and A. Brazma. Current approaches to gene regulatory network modelling.
BMC Bioinformatics, 8 Suppl 6, 2007.

34. M. M. Sondhi, J. Benesty, and Y. Huang, editors. Springer Handbook of Speech Pro-
cessing. Springer-Verlag, January 2010.

35. P. Spirtes. Introduction to causal inference. Journal of Machine Learning Research,
11:1643–1662, 2010.

36. M. Stetter, G. Deco, and M. Dejori. Large-scale computational modeling of genetic
regulatory networks. Artificial Intelligence Review, 20(1–2):75–93, October 2003.

37. J. Tegner, M. K. Yeung, J. Hasty, and J. J. Collins. Reverse engineering gene net-
works: integrating genetic perturbations with dynamical modeling. Proceedings of the
National Academy of Sciences, USA, 100(10):5944–5949, May 2003.

38. J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis. Using Bayesian
network inference algorithms to recover molecular genetic regulatory networks. In
International Conference on Systems Biology (ICSB02), December 2002.

39. J. Yu, V. A. Smith, P. P. Wang, A. J. Hartemink, and E. D. Jarvis. Advances to
Bayesian network inference for generating causal networks from observational biolog-
ical data. Bioinformatics, 20(18):3594–3603, 2004.

40. Y. Zhang, Z. Deng, H. Jiang, and P. Jia. Dynamic Bayesian network (DBN) with
structure expectation maximization (SEM) for modeling of gene network from time
series gene expression data. In H. R. Arabnia and H. Valafar, editors, BIOCOMP,
pages 41–47. CSREA Press, 2006.

41. A. Zollmann, A. Venugopal, F. J. Och, and J. M. Ponte. A systematic comparison
of phrase-based, hierarchical and syntax-augmented statistical MT. In D. Scott and
H. Uszkoreit, editors, COLING, pages 1145–1152, 2008.

42. G. G. Zweig. Speech Recognition with Dynamic Bayesian Networks. PhD thesis, Com-
puter Science, University of California Berkeley, April/May 1998.

43. G. G. Zweig. Bayesian network structures and inference techniques for automatic

April 19, 2013 2:26 WSPC/INSTRUCTION FILE dsem

20 Fogelberg and Palade

speech recognition. Computer Speech and Language, 17:173–193, 2003.

